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Abstract
Large scale gene expression mapping is motivated by the premise that the information
on the functional state of an organism is largely determined by the information on gene
expression (based on the central dogma). In order to draw meaningful inferences from
gene expression data, it is important that each gene is surveyed under several
different conditions, preferably time series. Such data sets may be analyzed using a
range of methods with increasing depth of inference, such as cluster analysis,
determination of mutual information content, and, ultimately, genetic network reverse
engineering (currently under development for discrete network models).

Genes, information and dynamics

Genomics

1. The genome is the major source of information determining the
phenotype.

2. The information of the genome is coded in the DNA sequence.

3. Therefore knowledge of the DNA sequence should allow us to determine
the phenotype.

Functional genomics

1. It is not yet possible to predict biomolecular network dynamics
(phenotype!) directly from sequence data.

2. Gene expression (mRNA and protein) is the first link from sequence to
function.

3. New computational methods are required for functional inference from
sequence and gene expression data.
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Information flow in genetic networks

• Genes regulate the expression of genes through a hierarchy of signaling
functions.

• Gene expression patterns represent the variables, while the signaling
functions are determined by the gene structure.
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The solid lines refer to information flow from primary sources (DNA, mRNA). The broken lines correspond
to information flow from secondary sources back to the primary source (Somogyi & Sniegoski,1996;
Complexity 1(6):45-63).
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How can we conceptualize a distributed biomolecular network?

• Assuming a highly cooperative, sigmoid input-output relationship, a
gene can be modeled as a binary element.

• Each gene may receive one or several inputs from other genes or itself.

• The output is computed from the input pattern according to logical or
Boolean rules.

Wiring and rules determine network dynamics

           

A B C

A B C
2 1 1inputs

rule 2 24

Basis for rules:

1. A activates B
2. B activates A and C
3. C inhibits A

Wiring and rules

Trajectory 1 results in a point attractor

Trajectory 2 results in a 2-state dynamic attractor

iteration A B C

1 1 0 0

2 0 1 0

3 1 0 1

4 0 1 0

iteration A B C

1 1 1 0

2 1 1 1

3 0 1 1

4 0 0 1

5 0 0 0

6 0 0 0

(Somogyi & Sniegoski,1996; Complexity 1(6):45-63)
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Many states converge on one attractor
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Network wiring and rules (not shown; analogous to previous figure) determine the transformation of the
state from one time point to the next, forming a trajectory (upper right panel), which inexorably leads to
an attractor (state cycle). Each state of the trajectory is shown as a point (labeled by its time step number)
in the center panel. The labeled trajectory (state points connected by lines) is one of many trajectories
leading to the repeating, six state attractor pattern. The centripetal trajectories leading to the attractor form
the basin of attraction. Perturbations resulting in the switch of one state to another within this basin of
attraction will not change the final outcome of the network, conferring stability
(http://rsb.info.nih.gov/mol-physiol/genetsum.html; Somogyi & Sniegoski,1996; Complexity 1(6):45-63).
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Network terminology

     Architecture

wiring <-> biomolecular connections

rules (functions, codes) <-> biomolecular interactions

     Dynamics

state <-> set of molecular activity values; e.g. gene
expression, signaling molecules

state transition <-> response to previous state

trajectory <-> series of state transitions; e.g.

differentiation, perturbation response

attractor <-> final outcome; e.g. phenotype, cell type, 
chronic illness

Issues in modeling frameworks

• Binary discrete network (simple, can handle large numbers of elements,
oversimplification)

• Multi-state discrete network (approaches behavior of continuous
network given sufficient state resolution; tradeoff in simplicity, more
realistic)

• Continuous network (systems of differential equations, difficult to
implement for large numbers of elements)

Goal

• Knowledge of wiring and rules allows us to predict the behavior of
biomolecular systems

• We seek to infer wiring and rules through:

− direct experimental examination of biomolecular interactions

− analysis of biomolecular activity patterns (reverse engineering)
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Functional inference from large scale gene expression data
We are facing the challenge of reverse engineering the internal structure of a
complex system from its output. This will require high precision in data acquisition,
and sufficient coherence among the data sets, as found in time series.

High precision, high sensitivity
assay

• RT-PCR (reverse transcription
polymerase chain reaction)

• RNA standard serves as internal
control

• Measurement scales linearly with
RNA copy number on log scales
(Somogyi et al.,1995; J Neurosci 15:2575-2591)

• Flexible and scalable through
automation

RT-PCR analysis of gene expression in developing rat CNS

0

2

4

6

8

10

log ratio

lo
g 

m
ol

ec
ul

es

-1
.7

5

-1
.2

5

-0
.7

5

-0
.2

5

0.
25

0.
75

1.
25

1.
75



Inference from Large-Scale Expression Data Functional Genomics, Nov. 2-5 1997
http://rsb.info.nih.gov/mol-physiol/FG/FGpresentation.html

7

The Gene Expression Matrix of rat spinal cord development
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DiverseDiverse

•samples: cervical spinal cord RNA, triplicate animals
•procedure: ratiometric RT-PCR with internal standard
•analysis: PAGE, densitometry, averaging, normalization

Roland Somogyi, Ph.D.
•NIH - rolands@helix.nih.gov - (301)-402-1407
Xiling Wen, M.D.
Stefanie Fuhrman, Ph.D.
Susan Smith
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Inference of Shared Control Processes

Cluster analysis

• Similarities in gene expression patterns suggest shared control.

• Clustering gene expression patterns according to a heuristic distance
measure is the first step toward constructing a wiring diagram.

Distance measures

• Euclidean distance: A gene expression pattern over n time points is a
point in n-dimensional parameter space.
D = √ (∑ (ai-bi)2 )

• Mutual information: Most general measure of correlation.
M(A,B) = H(A) + H(B) - H(A, B)

• “Coherence” (normalized mutual information): Captures similarities in
patterns independent of individual information entropies. “In how far is
pattern A able to predict pattern B?”
C = M(A, B) / Hmax(A, B)

Euclidean Cluster Analysis of a Model Network
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gene Boolean rule
A F and H and J
B G and H and J
C F and H and I
D G and H and I
E H and I and J
F I and J and K and L and (not G)
G I and J and K and L and (not O)
H I and J and K and L
I J and K and L
J K and L
K K or L
L L or M
M N or O
N N and O
O N and O and (not E)

trajectory I II III IV
time 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 1 2 3 4 1 2 3 4
A 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0
B 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0
C 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
D 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0
E 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
G 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
H 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
I 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
J 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
M 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Trajectory (Gene Expression) Clusters

Wiring (Molecular Interaction) Clusters

(Somogyi et al.,1996; Proceedings of the World Congress of Non-Linear Analysts 1996)
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Euclidean cluster analysis

• Euclidean distance measure on combined 
expression value and slope vectors.

• Branch lengths determined from pair-wise 
distance matrix.

• Optimization of tree using least squares 
routine (Joe Felsenstein’s FITCH).

Roland Somogyi, Ph.D.
NIH - rolands@helix.nih.gov 
Xiling Wen, M.D.
Stefanie Fuhrman, Ph.D.
Susan Smith
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Functional gene families map to distinct control processes
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(Michaels et al.; Proceedings of the Pacific Symposium on Biocomputing 1998, in press. For a color
representation of this plot, please see: http://rsb.info.nih.gov/mol-physiol/PSB98/Clustering.html)
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Cluster analysis suggests 5-6 primary control processes

• Euclidean analysis targets genes sharing inputs and rules.

• Mutual information analysis targets genes only shared inputs.

• Developmental gene expression exhibits apparent redundancy, i.e. is
far from maximally diverse.

• The number of control processes is much smaller than the number of
regulated genes.

Overlapping control of gene expression in
spinal cord and hippocampus
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• The similarity of gene expression patterns between hippocampus and
spinal cord suggests the existence of a generalized genetic program
of neural development, common to all CNS regions.

• The assumption that this finding can be extrapolated to other CNS
structures is not far-fetched given the evolutionary distance between
hippocampus, a structure derived from cerebral cortex, and spinal cord.
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Analysis of CNS development and injury data identifies tightly
co-regulated genes

5HT1β R (metabotropic) Brm (transcription) PDGF β (peptide)
5HT3 R (ionotropic) TH (enzyme) PDGF R (receptor)
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Complete reverse engineering is possible for model networks

10 Transients
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1 Transient

20 Transients

26 Transients

15               genes               1 1              tim
e             13

Extracted minimal 
network architecture

 Transient or time-space pattern

Solution = original architecture

15                   genes                 1

(Somogyi et al., 1996; Proceedings of the World Congress of Non-Linear Analysts 1996)

• GeneTool algorithm: Identifies minimal, incomplete network from single trajectory
• Extracts original network architecture given sufficient input data

REVEAL, mutual information-based reverse engineering
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(Liang et al.; Proceedings of the Pacific Symposium on Biocomputing 1998, in press)

For n=50, the solution can be unequivocally inferred from 100 state transition pairs.
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Summary

General strategies for network model construction

• Bottom up approach

− Determine characteristics of individual biomolecular interactions.

− Build model and test against for experimental conditions

• Top down approach

− Determine input-output patterns (time series) of network.

− Infer connections and rules using level-by-level inference.

• Hybrid approach: Knowledge of individual biomolecular interactions can
serve as constraints that will accelerate reverse engineering

Level by level inference from large scale gene expression data

• Data requirements

− High precision measurement method

− Data must resemble time series or state transitions

• Inference of shared control processes

− Euclidean distance analysis: shared wiring and rules

− Mutual information analysis: shared wiring, varying rules

• Complete reverse engineering

− Established for simple logical networks

− The principle of REVEAL could be applied to experimental data
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